
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1964

Simplified language and coding for limited data
processing applications
Jerry Ronald Tennant
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Tennant, Jerry Ronald, "Simplified language and coding for limited data processing applications " (1964). Retrospective Theses and
Dissertations. 2692.
https://lib.dr.iastate.edu/rtd/2692

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F2692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F2692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F2692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F2692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F2692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F2692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F2692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/2692?utm_source=lib.dr.iastate.edu%2Frtd%2F2692&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

This dissertation has been 64-10,670 
microfilmed exactly as received 

TENNANT, Jerry Ronald, 1938-
SIMPLLFIED LANGUAGE AND CODING FOR 
LIMITED DATA PROCESSING APPLICATIONS. 

Iowa State University of Science and Technology 
Ph.D., 1964 
Engineering, electrical 

University Microfilms, Inc., Ann Arbor, Michigan 



www.manaraa.com

SIMPLIFIED LANGUAGE AND CODING 

FOR 

LIMITED DATA PROCESSING APPLICATIONS 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major Subject: Electrical Engineering 

by 

Jerry Ronald Tennant 

Approved: 

In Charge of Major Work 

Head of Major Department 

Deanyïf Graduate/doliege 

Iowa State University 
Of Science and Technology 

Ames, Iowa 

1964 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ill 

APPENDIX B 63 

The EVE Language ^3 



www.manaraa.com

1 

INTRODUCTION 

This dissertation describes the characteristics of a proposed data 

processing system which could be operated by an inexperienced individual. 

The language requirements placed upon the individual are minimized by 

making it unnecessary for him to write programs or provide level designators 

on the input data. This is accomplished by having a set of programs stored 

in the computer memory where they are accessible to the system operator by 

some form of selection scheme. Furthermore, the operator is essentially 

forced to supply the input data in a form acceptable to the system by 

making him an integral part of the input loop. This has been done by 

implementing a new verb in the system language which will automatically 

provide the correct level designators to the data as it is input by the 

operator on an ordinary typewriter. 

The constraints imposed by a system operating in the above manner are 

analyzed in relation to the requirements of the business environment to 

determine if there is a class of problems in which this system could be 

effectively utilized. This question is answered in the affirmative by 

presenting two examples of the application of a fixed-program data processor 

to the solution of problems in a typical small business. Analysis of these 

examples and the comparison of a few typical programs written in COBOL and 

EVE indicate that the EVE language is more suited to the type of application 

proposed in this system. EVE is a high-level problem oriented machine lan­

guage. Programs in the EVE language are easy to write, compact in length, 

and require no translation by a compiler before implementation in hardware. 



www.manaraa.com

2 

The two sample cases also illustrate one technique of program selection. 

The program names are encoded with command words, operands, and file names 

peculiar to the particular business problems being programmed and placed on 

a panel of selection buttons. Program routines are presented to illustrate 

the technique of data level designation and the usage of the new verb added 

to the EVE language. 



www.manaraa.com

3 

EVOLUTION OF COMPUTER LANGUAGES 

Machine Language 

In general, a computer can be conceived of as a numerical-transfor-

mation machine. Numbers are the inputs to it, and the computer transforms 

these numbers into new numbers, which appear as the outputs (8). The 

automatic character of an automatic digital computer consists in its 

ability to perform definite sequences of arithmetic and other operations 

(such as looking up entries in a table). The operations in such a 

sequence must be specified by a corresponding sequence of computer 

instructions called the program (14). 

In the early days of computers, all programming was done in machine 

language. This implies not only that the programmer was confined to only 

those kinds of instructions which the designers of the machine had built 

into its comprehension, but also that he had to work in the numeric 

symbology which the machine accepted (3). The ENIAC was based on the 

decimal system, and instructions for it were written out in a straight 

number language in decimal digits. For instance, 792 and 438 might 

represent "ADD" and "MULTIPLY". The symbol "ADD" was not an acceptable 

one to the machine. Computers developed after the ENIAC used the binary 

system, where combinations of O's and l's served the same purpose as the 

decimal digits in the ENIAC (12). 

Using the machine language, the programmer was required to assign 

the absolute physical location and exact contents of each individual cell 

within the memory of the machine (1). The only way he could find infor­

mation in storage was to know the address of the cell which contained it. 



www.manaraa.com

4 

In principle all computer programs could be written in machine lan­

guage. In practice such a situation is neither efficient nor in some 

cases even possible. For example, programs which are several thousand 

words long become impossible in machine language because an overwhelming 

effort is required to add or delete even a single word from the program 

without losing the sequence of control (15). Further difficulty arises 

from the fact that a programmer reading a program written in machine lan­

guage obtains no sense of the operations being directed or of the way in 

which the computer will execute them without extensive practice and 

training in reading the language (1). 

Symbolic Language 

The first relief from these problems came with symbolic coding* In 

such a programming language, the machine accepted such symbols as "ADD", 

called mnemonic abbreviations (3). Mnemonic means "assisting the memory", 

and indeed programs written in a symbolic language were moderately easy 

to read with minimum preparation. Furthermore, the programmer was no 

longer bound to machine addresses. Now he could assign arbitrary mnemonic 

designations such as "WAGES" for the memory location containing the number 

representing the wages paid to someone. This procedure is known as 

symbolic addressing. 

In preparing instructions in symbolic language, the programmer finds 

it much easier to make insertions and deletions of instructions than it 

was with a machine language. In symbolic languages, insertion can be 

made simply by assigning new symbolic addresses to the new instructions 



www.manaraa.com

5 

and deletion by dropping instructions and correcting the symbolic 

addresses of the adjoining instructions (1). 

The internal machine structure, however, did not change, except that 

with a simple table of correspondence, the machine could transform one 

symbol into another ("ADD" into "010"). The routine which accepts a set 

of symbolically coded instructions, translates them into machine language, 

and at the same time also assigns the symbolic addresses to absolute 

addresses is generally called an assembly routine (11). The particular 

selection of commands available in the symbolic language is slightly more 

extensive than that available in machine languages (1). For example, an 

assembler may allow for macro-instructions, which are kinds of instructions 

which the machine cannot execute directly but which must be broken down 

into combinations of basic machine instructions (3). However, the instruc­

tions with which an assembler deals are usually actual machine instructions 

expressed in symbolic form. That is, there is in general a one-to-one 

correspondence between the symbolic instructions written by the programmer 

and the machine instructions produced by the assembler. 

Thus, the assembler helps with the symbology problem confronting the 

programmer, expands the number of apparent operations available from the 

machine, and eases the chore of assigning storage locations in the memory 

(3). Assemblers as defined above were in general use at least as early 

as late 1953. By 1955 they had reached a high degree of elegance for 

"machine language coding" and have not changed markedly since insofar as 

the language acceptable to them and the running times are concerned (11). 



www.manaraa.com

6 

Automatic Coding Languages 

Symbolic languages and the assembly routine concept developed into 

advanced programming techniques as attempts were made to lighten still 

further the load of the programmer or coder. Automatic coding languages 

use instructions that appear very much like ordinary English and thus 

are quite distant from machine languages — much more so than the symbolic 

languages. Their use enables the programmer to make full use of the capa­

bilities of a computer without knowing anything about the mechanical pro­

cess of translation from the language to the detailed code required by 

the machine (6). 

Because of the distance of automatic coding languages from machine 

languages, some means must be used to bridge the gap. A program written 

in symbolic language or automatic coding language is worthless until it is 

translated into the machine language of the computer for which it was 

written (1). Instead of being translated by the programmer, however, it 

is translated by the computer itself. The use of an assembly routine to 

perform the translation for a symbolic language has already been discussed. 

The means used to accomplish the translation in the case of an automatic 

coding language is to prepare or precede the computer with an intermediate, 

or automatic, program which is always available in the computer memory (8). 

This program is generally known as a "compiler" or "processor". 

In converting from an automatic language such as COBOL into binary 

terms, the machine must play two roles. First it serves purely as a 

translator. It receives a "source" program on magnetic tape written in 

COBOL, and performs, through the use of its compiler routine, the series 



www.manaraa.com

7 

of operations required to spell out the same instructions in its own 

binary language. The result is the production of another tape, ti.fc 

"object" program (12). The object program is the actual machine language 

program which the computer will execute in performing its computation or 

data processing task. 

Building the translating routine, or compiler, is simply the problem 

of constructing a routine which makes a given physical sequential machine 

imitate the behavior of a nonexistent, but still sequential, machine 

whose language is the particular automatic coding language. 

The compiling routine is an extension of the assembly routine. 

Generally a compiler permits more complex macro-instructions than an 

assembler, and it often excludes machine instructions (even in symbolic 

form) from the language which it can accept. While the assembler generally 

deals with each instruction independently of all others, the compiler 

attempts to capitalize on the information which is contained in the 

structure or logic of the problem; the context of each instruction is 

important. Commonly, a compiler is problem oriented in the sense that it 

accepts as input the language and operations of a particular class of 

problems (3). 

There are many automatic coding languages (with their compilers) in 

existence. For example, the IBM FORmula TRANslating system, FORTRAN, is 

an automatic coding language which has a source language closely resembling 

the ordinary language of mathematics, and a processor which converts source 

programs written in the FORTRAN language into machine language object 

programs. The FORTRAN project was begun in the summer of 1954 and has 

never really ended. Its goal was to enable the programmer to specify a 



www.manaraa.com

8 

numerical procedure using a concise language like that of mathematics and 

obtain automatically from this specification an efficient machine language 

program to carry out the procedure (11). 

The success with algebraic language compilers, such as FORTRAN, led 

to an international effort to define a universal ALGOrithmic Language 

called ALGOL. A program written in terms of a particular language can be 

run on any computer for which there is an automatic program that can com­

pile or interpret the language. This fact indicates the feasibility of 

the concept of establishing a universally acceptable international auto­

matic language, analagous to the universal written language of music (8). 

As a result of a series of conferences toward this goal, the "Report on 

the Algorithmic Language ALGOL" was published by the Association for Com­

puting Machinery in 1960 (13). The purpose of ALGOL is to assist in the 

programming of primarily algebraic numerical computations. 

In the past few years, a number of systems especially designed for 

data processing applications have been developed. One of the languages 

most widely used by these systems is the "COmmon Business Oriented Lan­

guage", or COBOL (9). It contains expressions and statements that more 

closely parallel the clauses, phrases, and statements of ordinary English 

usage. COBOL, like ALGOL, is intended to be a generally accepted language 

for which compilers are being written that will enable the running of a 

single COBOL program on many different computers. In May, 1959, repre­

sentatives from the government, computer manufacturers, and industrial 

computer users met to form the CODASYL committee. In April, 1960, the 

U. S. Government Printing Office published "COBOL -- A Report to the Con­

ference on Data Systems Languages, Including Initial Specifications for a 



www.manaraa.com

9 

Common Business Oriented Language (COBOL) for Programming Electronic Digi­

tal Computers". 

High-Level Machine Language 

The successive development of symbolic assembly routines and compi­

lers demonstrated that one is not limited to the basic machine language. 

Suitable translating routines permit a variety of input languages to be 

used (3). These languages, however, although problem oriented, still are 

somewhat determined, in format, by the machine on which they will be used. 

As has been indicated, these languages require a programmed translator to 

make themselves understood by a computer. Such a translator, in the case 

of FORTRAN, for example, has approximately 65,000 machine instructions (10). 

Accommodating to the nature of the computer in this way requires a 

considerable commitment of compiling and debugging prior to the first 

feedback of results. Furthermore, it has been found necessary to write 

compilers for many problem fields, which gave this moue of solution a 

patchwork look (10). 

For these reasons, a group of researchers at the IBM Thomas J. 

Watson Research Center, among others, decided to examine the problem 

in terms of changing the fundamental organization of the computer itself. 

Their goal is to return to machine language operation, but this time to 

develop a computer with a high-level language, at least as powerful as 

COBOL or ALGOL, etc., as its machine language. Such a new machine language 

and organization would eliminate the necessity for compilation and 

assembly. 



www.manaraa.com

10 

In an attempt to prove that a powerful language can be implemented 

efficiently in hardware and that great cost or great difficulty of use are 

not necessary consequences of a powerful computer organization, a system 

called ADAM has been designed. The new language which this system uses, 

called EVE, is described in Appendix B (10). 

.SiM-ï >• S ,r ^ I-^E j'1 jî: j• j:V 3 



www.manaraa.com

11 

PROGRAM-SELECTION DATA PROCESSING SYSTEM 

The previous section presented a brief outline of some of the methods 

which men have utilized to lighten the load of programming drudgery and 

minimize the probability of human error in providing instructions to 

machines. It was shown that digital computers evolved in their own tech­

nical environment, and to a degree independently of the problem environ­

ment. Also, it has been necessary to have computing centers with staffs 

of programmers as intermediaries between machines and users. As the 

inadequacy of the arrangement became apparent, problem oriented languages 

were written, with compiler programs to allow the machines themselves to 

do the conversion to their own machine language. Recently, a system has 

been designed to implement a problem oriented language directly (10). 

These measures have all been undertaken at one time or another to make 

computers easier and more efficient to use, and thereby to make them 

available to more users with more problems. 

The remaining sections of this dissertation will attempt to illustrate 

a data processing system which further reduces the user's communication 

problems and again broadens the scope of computer applicability for a 

limited class of problems. 

Programming With Programs 

With the advent of automatic coding languages, the computer operator 

needed only to write a program, in a language closely resembling his own, 

and to supply it to the computer for translation. The system to be pro­

posed here will make it unnecessary for the user himself to write programs, 



www.manaraa.com

12 

thereby relieving him of the task of learning a programming language or of 

constructing workable programs. The manner in which this is accomplished 

may best be explained by referring to Figure 1. At the outset, before a 

user purchases the computer system, his needs and proposed areas of com­

puter application are analyzed by a computer agency. A list of all the 

standard programs which he will require over a period of time is drawn up 

and the actual programs are written by trained programmers. These programs 

are then stored in the computer memory where they may be called on whenever 

they are needed. The names of these programs are composed of simple com­

mand words, operands, and file names which are listed on rows of selection 

buttons on the control console. Then, whenever the operator wants to per­

form a standard routine, such as "COMPUTE WEEKLY PAYROLL", he has only to 

press the appropriate combination of selection buttons, supply the input 

data in a predetermined manner, depending on the selected routine, and the 

computer handles the rest of the details and carries out the actual infor­

mation processing. 

At first glance, it may seem that this type of system places rather 

severe restrictions upon the operator by limiting him to only those pro­

grams which have been stored in the machine in advance. Whether this is a 

serious limitation, however, depends upon the type of service which is 

expected from the computer. Obviously, such a system cannot be used in 

a situation where new programs are required every day, such as in a 

scientific laboratory or computation center where the same problem may 

never be solved twice. So unless every possible program could be thought 

of in advance and stored in the machine, this kind of problem will have 

to be left to other types of systems. 



www.manaraa.com

13 

u 1 

Output 

Operator 

Confutation 
ar.a 

Processing 

Automatic 
Data 

Specification 

Figure 1 Program-selection data processing system 



www.manaraa.com

14 

The number of programs which will be required, therefore, is another 

factor to consider in examining possible areas of application of the pro-

gram-selection system. The number of programs must be of small enough 

number such that the memory capacity of the computer is not exceeded. 

This places a limitation on the scope of the problems which the system 

will be able to handle in any given situation. 

With these considerations in mind, it appears that the proposed data 

processing system would be most applicable in a small business environment. 

In such a situation, programming needs would be relatively constant over a 

period of time, and therefore could be anticipated in advance. Moreover, 

it would seem that a fairly small number of programs would handle most of 

the data processing tasks which any given business might carry out on a 

routine basis, and that these programs would not be of excessive length. 

In order to demonstrate that these optimistic speculations have some 

basis in fact, and to illustrate in a more concrete manner how the proposed 

system might be utilized, two typical data processing tasks will be ana­

lyzed in detail. They are "typical" of the small business environment 

previously suggested, in that these tasks would ordinarily require the 

attention of one to five persons. 

Graduate Student Records 

One application in which a small computer could be used effectively is 

in processing records of graduate students in a particular department of a 

university. Information regarding each student in the department might be 

contained in a series of files which contain records such as those in 

Figures 2, 3, and 4. One report which is required on a regular basis is 



www.manaraa.com

} 

i 

15 

the Quality-Point Report show in Figure 5, which indicates the number of 

credits which a student has accumulated and his grade average to date. A 

list cf. some of the other processing operations which could be carried 

out on the basis of the information contained in these files is presented 

in Figure 6. 

It can be seen that the number of operations is quite small. A pro­

gram could be written for each of the sixteen operations and easily stored 

in the memory of a computer. The structure of the program names suggests 

that these names can be conveniently encoded on groups of selection buttons 

for automatic reference by the computer operator. This has been done in 

Figure 7. The left column contains standard command words, the center 

column two operand names, and the right column the file names. The two 

prepositions serve to indicate whether information is being put into or 

taken from a file. With this fairly small number of selection buttons, 

the operator has the capability of selecting any one of the sixteen 

internally stored routines to perform his particular data processing 

problems. 

In a situation such as that described in this example, it is likely 

that the file structure and type of processing conducted upon these files 

will not change much from one quarter to the next* Hence, after the 

original analysis, program writing, and modifications have been made, it 

seems reasonable to assume that a program selection system would adequately 

meet the needs of student record processing as described above. 



www.manaraa.com

16 

Name Date of Birth Date Entered 

Highest Degree Held Institution 

Degree Working On Research Area 

Completion Dates: 

English Master's Final Exam 

French Preliminary Exam 

German Doctoral Final Exam 

Russian Degree Granted 

Other 

Figure 2. Record front graduate student file 



www.manaraa.com

17 

Name Quarter Year 

Course Credit Grade 

Figure 3. Record from transcript file 



www.manaraa.com

18 

NAME 

M. S. Committee: 

MAJOR Professor 

MINOR Professor 

Professor 

Professor 

Professor 

Ph. D. Committee 

MAJOR Professor 

FIRST MINOR Professor 

SECOND MINOR Professor 

Professor 

Professor 

Figure 4. Record from committee file 



www.manaraa.com

19 

QPA REPORT 

NAME Date 

Total Total 
Quarter Quality 
Credits Points QPA 

Figure 5. Record format of quality point average report 



www.manaraa.com

20 

1. OUTPUT GRADUATE STUDENT FILE 

2. OUTPUT COMMITTEE FILE 

3. OUTPUT TRANSCRIPT FILE 

4. OUTPUT RECORD FROM GRADUATE STUDENT FILE 

5. OUTPUT RECORD FROM COMMITTEE FILE 

6. OUTPUT RECORD FROM TRANSCRIPT FILE 

7. OUTPUT ITEM FROM GRADUATE STUDENT FILE 

8. OUTPUT ITEM FROM COMMITTEE FILE 

9. OUTPUT ITEM FROM TRANSCRIPT FILE 

10. ADD RECORD TO GRADUATE STUDENT FILE 

11. ADD RECORD TO COMMITTEE FILE 

12. ADD RECORD TO TRANSCRIPT FILE 

13. DELETE RECORD FROM GRADUATE STUDENT FILE 

14. DELETE RECORD FROM COMMITTEE FILE 

15. DELETE RECORD FROM TRANSCRIPT FILE 

16. COMPUTE QUALITY POINT AVERAGE REPORT 

Figure 6. Processing operations for graduate student files 



www.manaraa.com

21 

OUTPUT RECORD GRADUATE STUDENT 

ADD ITZM COMMITTEE 

DELETE TRANSCRIPT 
! TO 

1 FROM 

COMPUTE QPA REPORT 

Figure 7. Program selection buttons for graduate student case 



www.manaraa.com

22 

Wholesale News Agency 

A somewhat more elaborate use of the program-selection data processor 

will now be typified by applying it to the problems encountered in the 

operation of a wholesale news agency. Such an agency receives shipments 

of magazines from various publishing companies and distributes them to 

retail dealers throughout a city for sale to the public. The wholesale 

agency under consideration services more than 50 dealers in a town with a 

population of 30,000 people. 

Briefly, the major activities associated with the conduction of the 

agency's business for a one week period of time will be described as 

follows. Magazines are shipped by truck, and various shipments are 

received every day. As the magazines come in, their arrival is noted in 

a general receiving book. Twice each week, an "order" is tied and 

delivered. This means that each retail dealer is supplied with a certain 

number of each magazine included in the day's order which he wishes to 

sell, the quantity of each title being determined by his customers' inter» 

ests, his volume of business, etc. Any single order usually contains 

about 50 different titles, most of which differ from those of the previous 

order, since monthly magazines can be distributed only once each month 

and weeklies, only once a week, etc. Over a period of time, nearly 400 

different magazines will be circulated for sale. 

The first step in making up an order consists of filling out a dis­

tribution sheet. On this form, the manager indicates the quantity of each 

title which each dealer is to receive, checking with the receiving book to 

make sure that every title on the order has been received. From the 



www.manaraa.com

23 

information on the distribution sheet, an invoice is made out for each 

dealer, which lists the number of each magazine he will receive and the 

total charge for his order. The charge for each dealer is entered in the 

accounts receivable file, and the invoice serves as the dealer's bill. 

The magazines indicated on the invoices are then tied into bundles and 

delivered to the respective dealers throughout the city. 

Once a week, a representative from the news agency visits each 

dealer to complete a check-up study. At this time, he will pick up out-

of-date magazines which have not been sold and give the dealer credit for 

them. A publisher may have a particular interest in the sales progress 

of a new issue, in which case the agent will note the number of copies 

of the magazine still on the dealer's rack for comparison with the number 

of copies that dealer originally received and with the results of other 

dealers. If sales are better in one area, some of the issues may be 

taken from areas of slow sales to the newsstands having the higher demand. 

Upon his return to the office, the agency man will record the credit 

extended to various dealers in the accounts receivable file and perhaps 

analyze the percentage of sales of the magazines he has checked on the 

newsstands. 

These are a few of the routine responsibilities and duties of a 

wholesale news agency. The procedure changes very little throughout the 

year, and much of the work is mechanical and time-consuming. The agency 

employs three people on a full-time basis, and two part-time assistants. 

Here, then, is a situation in which the application of an inexpensive, 

easy-to-operate data processing system would be quite useful. As in the 

previous example, the pertinent information would be contained in files 



www.manaraa.com

such as those of Figure 8. A few of the records from two of these files 

are presented in Figures 9 and 10. The standard operations, numbering 

about 80, which would be performed by a computer using the information 

in these files, are listed in Figure 11. The 80 routines may be selected 

by pressing a combination of the coded buttons in Figure 12. 

System Feasibility 

The two cases just discussed answer a few of the questions which 

were raised regarding the possible limitations of a fixed-program data 

processing system. The cases illustrate by example the fact that 

businesses or offices having unchanging modes of operation do exist, and 

that these operations can be carried out by a collection of programs 

which can conveniently be stored in a computer. It is easy to imagine 

many other instances with similar characteristics, such as a drug store, 

lumber yard, etc., where the same principles would apply. 

The examples further demonstrate the manner in which one of the 

stored programs could be called into service by pressing a combination of 

a smaller number of program-selection buttons. 

Thus it has been shown that a data processing system which has all 

its routines stored in advance, available to the user by means of encoded 

selection buttons, is indeed feasible from a business point of view. The 

next two sections will consider the organization of such a system from an 

engineering standpoint. The. length of some of the programs mentioned in 

the two sample cases will be examined and air appropriate language chosen 

for use in writing these programs. 



www.manaraa.com

25 

Master File •- Contains approximately 400 records consisting of magazine 

titles, the dealer price of each, the year«to«date sales of 

each, and the publisher of each. 

Dealer File — Lists the number, name, and address of each dealer serviced. 

Distribution File « Input file describing the quantity and title of the 
magazines which each dealer will receive in a given order. 

Check-Up File Records the number of copies of each issue of any given 
title returned by the dealers and the resulting percentage of 
sales for that issue. 

Dealer Invoice File •• Output file presenting, by dealer, the titles and 
quantities of magazines of each price group and the total price 

of the order. 

Payroll File Records the salary of each employee and the number of 
hours each has worked during a particular pay period. 

Accounts Receivable File •- Amount due from each dealer. 

Accounts Payable File •• Amount owed to each publisher. 

Operating Expenses File — Records the building expenses, truck gasoline 
and service, and other miscellaneous expenses. 

Figure 8. Description of wholesale news agency files 



www.manaraa.com

26 

TITLE PRICE YTD-SALES PUBLISHER 

Argosy 0.50 62. 85 Popular 

Cosmopolitan 0.35 105. 15 International 

Family Circle 0.15 475. 30 Independent 

Field & Stream 0.35 34. 05 Curtis 

Fur, Fish, & Game 0.25 15. 85 Capital 

Good Housekeeping 0.50 135. 70 International 

House Beautiful 0.60 215. 40 International 

Ladies Home Journal 0.35 165. 90 Curtis 

Look 0.25 220. 25 Curtis 

Modern Screen 0.35 128, ,30 Dell 

Movie Star Parade 0.25 145 .70 PDC 

Outdoor Life 0.35 64 .35 Select 

Popular Photography 0.50 27 .40 Triangle 

Reader's Digest 0.35 835 .15 Select 

Redbook 0.35 143 .80 Select 

Saturday Evening Post 0.20 472 .00 Curtis 

Seventeen 0.50 79 .10 MLA 

Time 0.35 35 .60 Select 

Woman's Day 0.15 678 .20 Fawcett 

Figure 9. Sample records from master file 



www.manaraa.com

27 

DEALER NUMBER DEALER NAME ADDRESS 

1 Bill's Newsstand 201 6th 

2 Hogan Drug 426 Central Ave. 

3 Super Value 1700 2nd Ave. N. 

4 Safeway 320 2nd Ave. S. 

5 Kresges 550 Central Ave. 

6 Warden Cigar Shop 104 9th St. 

7 Central Drug 915 Central Ave. 

8 Rexall Drug 406 Elm St. 

9 Donavan News 1105 1st Ave. N. 

10 Jones Grocery 1826 S. 18th St. 

Figure 10. Illustrative records from the dealer file 



www.manaraa.com

28 

INPUT (Any File) 

OUTPUT (Any File) 

OUTPUT ITEM FROM (Any File) 

OUTPUT RECORD FROM (Any File) 

ADD RECORD TO (Any File) 

DELETE RECORD FROM (Any File) 

ADD ITEM TO (Any File) 

DELETE ITEM FROM (Any File) 

COMPUTE (Any File) 

Figure 11. Processing operations for wholesale news agency 



www.manaraa.com

29 

DEALER 

DISTRIBUTION 

TO 

DEAL2S INVOICE 

PAYROLL 

ACCOUNTS RECEIVABLE 

ACCOUNTS PAYABLE 

OPERATING EXPENSES 

Figure 12. Program selection buttons for wholesale news agency case 

OUTPUT 

DELETE I 

RECORD 

ITEM 

CHECK-UP 



www.manaraa.com

30 

SYSTEM DESIGN CONSIDERATIONS 

Language Criteria 

There are three factors which must be considered in choosing a pro­

gramming language for the fixed-program data processor: 

1. Length of programs written in the language 

2* Ease of writing or changing the program 

3. Ease of implementing the language 

Since all the programs are to be stored in the computer memory, it 

is obvious that a language which describes a sequence of operations with 

the least number of characters is the most desirable* If the programs 

are as short as possible, more room is available in the memory for addi­

tional programs, allowing the system to be utilized in more complex 

assignments. 

The ease of writing the programs originally is also important. The 

data processor has been proposed for usage by a small business manager 

who wants the most inexpensive system possible. His original investment 

will be less if the time required to write the necessary programs is 

minimized. An easy-to-use language also reduces the time which would be 

needed to revise and up-date the programs zt s later time, again keeping 

the costs down. 

Finally, the implementation of the language must be considered. The 

most simple and direct programming language might require the most complex 

hardware to use the resulting programs. This would greatly increase the 

cost of the system, and thus a compromise would have to be made between 

the optimum language and the most economical hardware design. 



www.manaraa.com

31 

The COBOL Language 

The most logical choice of a language which would satisfy the above 

requirements is COBOL, since it was designed specifically for use in 

business applications. It closely resembles English, so one would expect 

COBOL programs to be fairly easy to write. Therefore, two COBOL programs 

will be written to illustrate this and also to determine how long the 

COBOL routines will be. The reader is referred to Appendix A for details 

concerning the COBOL language. 

One routine listed in both sample cases was that for adding a record 

to a file. As an example of this type of routine, a COBOL program will be 

written which will add a record to the Master File in the news agency case. 

As shown in Figure 9, the Master File contains about 400 magazine 

records, indexed by title, consisting of information about each magazine. 

Adding a record to this file consists of inserting a new title at its pro­

per alphabetical location in the file. In order to do this, the titles to 

be added must be supplied by an input file, compared with the titles in 

the old Master File, and a new Master File written which includes the new 

titles in their proper location. 

Each title with its corresponding information in each file is called 

a record of that file, and is referred to in the program by name. The 

name of a record in the old Master File is called OM for Old Master; 

that of the new Master File, NM; and that of the input file, IN-REC. 

A flow diagram illustrating the instructions and decisions involved 

in inserting new records into the old Master File is shown in Figure 13. 

The procedure division of the COBOL program, written on the basis of the 

flow diagram, is presented in Figure 14. It contains about 600 characters. 



www.manaraa.com

32 

\ / 

Value 

Incut > 
At 

\ > 

i(cy in Old FiitN. 
.Equal High Vaiup 

Close 
Files 

STOP 
RUN 

Open 
Files 

a Old File 

Read 
Input File 

Record 

Record 
from 

Figure 13. Flow diagram for adding a record to a file 



www.manaraa.com

33 

PROCEDURE DIVISION. 

BEGIN. OPEN INPUT INPUT-FILE, OLD-MASTER-FILE, OUTPUT NEW-
MASTER-FILE. READ INPUT-FILE RECORD. 

OLD-FILE-READING, READ OLD-MASTER-FILE RECORD; AT END GO 
TO END-OF-FILE. 

KEY-COMPARISON. IF TITLE IN OLD-MASTER-FILE IS NOT LESS THAN 
TITLE IN IN-REC GO TO RECORD-ADDITION. 

COPY-OLD-RECORD. WRITE NM FROM OM. GO TO OLD-FILE READING. 

RECORD-ADDITION. WRITE NM FROM IN-REC, READ INPUT-FILE 
RECORD; AT END MOVE HIGH-VALUE TO TITLE IN IN-REC AND 
GO TO OLD-FILE-END-CHECK. GO TO KEY-COMPARISON. 

END-OF-FILE. MOVE HIGH-VALUE TO TITLE IN OM. IF TITLE IN ~-
IN-REC IS EQUAL TO HIGH-VALUE GO TO WRAPUP. GO TO 
RECORD.ADDITION. 

OLD-FILE-END-CHECK. IF TITLE IN OM IS NOT EQUAL TO HIGH-
VALUE GO TO COPY-OLD-RECORD. 

WRAPUP. CLOSE OLD-MASTER-FILE, INPUT-FILE, NEW-MASTER-FILE. 
DISPLAY 'JOB FINISHED'. STOP RUN. 

Figure 14. COBOL procedure division for adding a record to a file 



www.manaraa.com

34 

This is a general program for adding a record to a file. If the file 

name happened to be changed, very little program modification would be 

needed. Thus, this particular routine would probably be one of the stand* 

ard routines used by all fixed-program data processors regardless of the 

particular collection of files involved, thereby reducing the completely 

new programming effort needed to set up an operating system for each 

individual business. 

A program with some computation involved is the routine for computing 

the grade point average and preparing the report of Figure 5. The infor­

mation needed to compile this report is obtained from the Transcript File 

of each student. In order to keep track of the succeeding steps in the 

computation, the computer must be able to distinguish between each course 

name and its respective credit value and grade. This is done by supplying 

each space with a different symbolic name, as shown in Figure 15. 

COURSE-3, for example, is a distinctive name which refers to the name of 

the course contained in the data record, TRANS, at this particular loca­

tion. 

Again, a flow chart, Figure 16, has been prepared to show more clearly 

the steps of the processing which are carried out by the COBOL procedure 

division of Figure 17. In the course of the computation, the computer 

makes use of various temporary working storage locations which are defined 

in the data division of the complete COBOL program. This procedure divi­

sion contains about 1200 characters. 

Some of the programs listed in the graduate student and news agency 

cases would probably be longer and more complex, while some would be 

shorter than the two described above, but their average length is 



www.manaraa.com

35 

TRANS 

NAME QUARTER YEAR 

COURSE CREDIT GRADE 

COURSE-1 CREDIT-1 GRADE-1 

COURSE-2 CREDIT-2 GRADE-2 

COURSE-3 CREDIT-3 GRADE-3 

COURSE-4 CREDIT-4 GRADE-4 

COURSE-5 CREDIT-5 GRADE-5 

Figure 15. Transcript file record format 



www.manaraa.com

36 

x / 

End 

/ \ 

v/ 

No 

STOP 
RUN 

lose 

Q?A Report 

Comoute 

Move Spaces 

to Vovking 
Storage 

Figure 16. Flow diagram for quality point average computation 



www.manaraa.com

37 

PROCEDURE DIVISION. 

BEGIN. ACCEPT TODAYS-DATE. OPEN INPUT TRANSCRIPT, OUTPUT QPA-
REPORT. MOVE ZEROS TO CREDIT-SUM. MOVE ZEROS TO QUALITY-

POINT-SUM. 

TRANSCRIPT-READING. READ TRANSCRIPT RECORD; AT END GO TO WRAPUP. 

GRADE-PROCESSING. ADD CREDIT-1 TO CREDIT-SUM. MULTIPLY CREDIT-1 
BY GRADE-1 GIVING POINTS. ADD POINTS TO QUALITY-POINT-SUM. 
ADD CREDIT-2 TO CREDIT-SUM. MULTIPLY CREDIT-2 BY GRADE-2 
GIVING POINTS. ADD POINTS TO QUALITY-POINT-SUM. 
ADD CREDIT-3 TO CREDIT-SUM, MULTIPLY CREDIT-3 BY GRADE-3 
GIVING POINTS. ADD POINTS TO QUALITY-POINT-SUM. 

ADD CREDIT-4 TO CREDIT-SUM. MULTIPLY CREDIT-4 BY GRADE-4 
GIVING POINTS. ADD POINTS TO QUALITY-POINT-SUM. 
ADD CREDIT-5 TO CREDIT-SUM. MULTIPLY CREDIT-5 BY GRADE-5 
GIVING POINTS. ADD POINTS TO QUALITY-POINT-SUM. 
MOVE NAME TO PREVIOUS-NAME. READ TRANSCRIPT RECORD. IF NAME 
IN TRANS IS EQUAL TO PREVIOUS-NAME GO TO GRADE-PROCESSING. 

QPA-COMPUTATION. DIVIDE QUALITY-POINT-SUM INTO CREDIT-SUM GIVING 
QPA. MOVE PREVIOUS-NAME TO NAME IN QPA-REPORT. MOVE TODAYS-
DATE TO DATE IN QPA-REPORT. MOVE CREDIT-SUM TO TOTAL-QUARTER-
CREDITS. MOVE QUALITY-POINT-SUM TO TOTAL-QUALITY-POINTS. 
WRITE QPA-REPORT. MOVE ZEROS TO CREDIT-SUM. MOVE ZEROS TO 
QUALITY-POINT-SUM. GO TO TRANSCRIPT-READING. 

WRAPUP. CLOSE TRANSCRIPT, QPA-REPORT. DISPLAY 'JOB FINISHED'. 
STOP RUN. 

Figure 17. COBOL procedure division for quality point average program 



www.manaraa.com

certainly not prohibitive and many of these programs could be stored in a 

computer memory at one time. Thus, COBOL satisfies the first two require­

ments of an appropriate language for use in the proposed data processing 

system. It has been pointed out previously, however, that COBOL requires 

an extensive compiler for translating the written program into machine 

language. This leads to a complex and expensive system in terms of the 

hardware needed to operate with the COBOL language. Although the use of 

COBOL appears appropriate on the basis of the first two specifications, 

it is possible to find a language which is easier to implement and which 

is also acceptable in the same respects as COBOL. Such a language is EVE, 

described in detail in Appendix B. 

The EVE Language 

As was indicated in a previous section of this paper, EVE is a prob­

lem oriented language which can be directly implemented without the need 

of an intermediate compiler. For comparison with the COBOL programs, the 

routine for computing a student's grade point average will be written in 

the EVE language. 

The EVE language uses identifier numbers to indicate the structure of 

the data contained in a file. Using this type of notation, the Transcript 

File will appear as in Figure 18. The program will use the information 

contained in this file throughout the course of its computation. The pro­

gram itself is presented in Figure 19. This program contains about 450 

characters, as compared to 1200 for the equivalent COBOL program. 

It should be pointed out that the EVE program contains instructions 

which specify the format of the output data. In the COBOL program, this 



www.manaraa.com

39 

must be accomplished by the data division. Consequently, the EVE program 

actually performs an extra service, if a comparison is to be made of the 

procedure portions of the programs in each language. Thus it appears that 

an EVE program will be from one-half to one-fourth as long as an equiva­

lent COBOL program. 

The EVE language employs symbols more than does COBOL, and may pre­

sent a few more difficulties to the new learner. However, once he becomes 

familiar with these techniques, he will find that EVE programs are easier 

to write than the COBOL programs, partly because of the more convenient 

manner in which data organization is specified by the EVE language. 

The EVE language, then, satisfies all three criteria better than 

COBOL. It is easier to use; it results in shorter programs; and it can be 

directly implemented. For these reasons, it is recommended that EVE, or 

a similar language, be used as the operating language in a fixed-program 

data processing system. 



www.manaraa.com

40 

nTi'IANSCRiPTn © Student N 

© Quarter . 

© Course 

0 Credit 

0 Grade 

© Coursa 

0 Credit 

0 Grade 

© Course 

0 Credit 

0 Grade 

0 Quarter 

0 Course 

0 Credit 

(%) Grade 

0 Course 

0 Credit 

0 Grade 

0 Student Naze 

0 Quarter 

© Course 

etc. © 

Figure 18. Transcript file format in the EVE language 



www.manaraa.com

41 

vSTARTv (3) ur.it "26" —> Record 

(3) "0"—^ Totalhours © "0"—> ïotalcrcdits 

0 „2" —> I 0 „2': —> J 

© ̂NAKSbbb. •, tbbVOTAL Cil ZD IT HOURSbbb...bbbTOTAL QUALITY 

POINTSbbb...bbbQ?Ab> —>unit "13" line ̂  1 

vCCMPUTEv © Record©î I ©f J ©t 2 —> CH 

© Record© j ï i J 3 —> LC 

© if_ LG = "A" © CH- ,:i" —> Q? 

© if LC = "L" Q) CH- i;3" —> Q? 

© if LG - "C" © CH- "2" —> QP 

© if LG « "D" © CM- "I" —> Q? 

© if LG = "!•" © CH- "0" —> Q? 

© CH + To ta l.io jve >Totalhours 

© Q? 4 Totale.* edits —> Totaleredi ts 

© jj: Record ©̂ 1 (2)1'j ©j] reach © ©["NEXTQUARTER 

© J "1" —> J ©p CCXPUTZ 

vNEXTQUAi'TERv © if Record ©Zf I ©f J © | 3 0 ©P PRINT 
© "2" —> J © Ï + "1" —> I 

© P COMPb.Z 

vPRlNTv © Record (î) ç 0 edit "???...PPPbb" —> LINE (|)t 1 (Î)î 1 

© Totalhours edit ^M03???.^—> LINE (T)^ 2 

© Totalcredits edit "MÛ4PPPP." —> LINE (T)f 3 

Figure 19. EVE program for calculating grade point average 



www.manaraa.com

42 

© Totalcredits/îotalhours edit "KQ1P.ZZ"—> LINE ̂  

@ LINE —> "13" lir.c ^ 1 

(5) Record rcr.ch (3) (?) stop 

(?) delete LIM2 

© p ST,Ul: © 

Figure 19 (Continued) 



www.manaraa.com

43 

CONSOLE OPERATION AND DATA ENTRY 

Previous sections of this dissertation have illustrated the manner in 

which a number of programs can be written in a problem oriented machine 

language, stored in a computer memory, and selected by the operator by 

means of program-selection buttons or something equivalent. The remaining 

problem to be discussed is that of supplying the required input data to 

the system. 

Description 

In the matter of data entry, as in program selection, the goal is to 

provide a method of operation which anyone can accomplish without special 

training. For this reason, a typewriter with an ordinary keyboard could 

be used as the input«output device. The entire console could consist of 

this typewriter keyboard, a few additional command switches as shown in 

Figure 20, and the progra$a»selection buttons such as those of Figure 7 or 

Figure 12. The operation of the data processing system will be described 

with reference to these figures. 

When the operator wants the system to perform a certain routine, he 

presses his selection on the program-selection panel. If he presses the 

wrong buttons, or decides to change his selection, he may clear the selec­

tion panel with the RESET button. When his selection has been made, the 

operator presses the BEGIN button to start the computer operation. The 

computer follows the instructions in the selected program until it comes 

to a point at which input data is required. The machine then instructs 

the typewriter to type out a message which asks the operator for the appro­

priate information. The operator responds by typing the information as the 



www.manaraa.com

44 

"EGIX 

-lliSET iypawriter CANCEL 

;':o? JXECUTE 

Figure 20 Console layout 



www.manaraa.com

45 

answer to the machine's question. The characters he types are kept in a 

temporary storage memory until all the information is typed correctly. If 

he makes a typing error, the operator may press the CANCEL button (Figure 

20) and the question will be asked again, allowing him to re-type his 

answer. When all the input data has been supplied correctly to temporary 

storage, the operator presses the EXECUTE button. This enters the data 

from temporary storage into the main computer memory for use in processing 

by further instructions in the program being run. This same procedure is 

followed at any time during the running of a particular program when input 

data is required. Each time, the operator is told what information he 

must furnish and just how to furnish it. Since the data is supplied to 

the computer in the form of a response to a statement or question of the 

machine, the operator does not have to worry about the data format or level 

indication. The description and format of each file and record is stored 

in advance in the computer memory in a form such as that of Figure 18. 

This format description, together with the questions asked by the machine 

at various points in a program execution, assures that the operator auto* 

matically supplies information in a form which the computer can recognize 

and use properly. 

Example 

A simple example will illustrate the method of supplying input data 

described above. Suppose the operator of the wholesale news agency system 

wants to add another magazine and associated information to the magazine 

master file. The description of the format of the records in the master 



www.manaraa.com

46 

file has been previously stored in the computer memory in the following 

form: 

nMASTERn © TITLE 

© PRICE 

® YTD.SALES 

© PUBLISHER 

© TITLE 

© PRICE 

etc. 

The noun "RECORD" has also been named to describe one of these records 

and has the following structure: 

nRECORDn © TITLE 

© PRICE 

© YTD«SALES 

© PUBLISHER © 

Nov when the operator wants to add a record to the master file, he 

will first press selection buttons "ADD RECORD TO MASTER FILE" to select 

the proper internally stored routine. When the selection has been made, 

the operator then presses the BEGIN switch and the computer begins to 

follow the instructions of the selected program, a portion of which is 

reproduced in Figure 21. 

The first thing this part of the program does is to have the type, 

writer print out the uncompleted statement "TITLE • ", since the identi. 

fying key name in a master file record is a magazine title. The operator 

then types the title of the magazine to be added after the equal sign: 

TITLE - NEWSWEEK 



www.manaraa.com

47 

^TÏÏLS = 2 —> uni t 1 

(Typing ar.d Carriage Return) 

unit 1 —> Temporery Title 

surround Temporary Title ul th " (T) " 

^I-iViCE - 2 —> uni£ 1 

(Typing and Carriage Return) 

v. ni t 1 —> Temporary Price 

surround Temporary Price with "(T)" 

^_VTD"£.'.L£5 - ̂ —> wait 1 

(Typing and Carriage Return) 

uni e 1 —> Temporary Sales 

surround Temporary Sales -.ri th "(7) " 

(Typing ar.d Carriage Return) 

uni t 1 —> Temporary Publisher 

surrou;- ù Temporary Publisher T-' th " (Î) " 

( m'*v M U v ..... .̂ -* i IU J 

/-\A 
Temporary Title —> 1UCÛRD (T) i 1 

Temporary Price—> 'XZCQ23 ÇD | -

Temporary Sales —> RECORD (T)'f 3 

Temporary Publisher > RECORD (T) | 4 

Figure 21. Input-control portion of an EVE program 



www.manaraa.com

48 

When the operator has finished typing the magazine title name, he 

punches the typewriter carriage return button, or some such indicating 

device. This acts as a signal to the computer to proceed with the next 

instructions, which ask about the price of the magazine: 

TITLE - NEWSWEEK 
PRICE -

The operator types the correct price value and returns the carriage. This 

process continues until all the questions relating to a master file record 

have been asked by the computer and answered by the operator. The typed 

information would then appear as follows: 

TITLE - NEWSWEEK 
PRICE - 0.30 
YTD-SALES - 0.00 
PUBLISHER - CURTIS 

At any time during his typing, the operator can read what he has 

typed. If he has made an error, he can press the CANCEL command to remove 

what he has typed from the temporary storage location and have the question 

repeated. As an alternative, a back space and strike over might be used 

for corrections. 

As the data which the operator has typed is entered into the appro­

priate temporary storage location, it is automatically supplied with the 

proper level indicators. This is accomplished by the surround verb 

defined as follows. The instruction surround TEMPORARY with "(2)" will 

surround whatever characters that happen to be in the location called TEM­

PORARY with the (2) level indicator. 

If the computer fails to ask a question when the carriage has been 

returned, it means that all the required questions have been asked for the 

moment. An alternative procedure might be to have the typewriter indicate 



www.manaraa.com

49 

that no more immediate input is required. The operator will then press 

the EXECUTE switch to instruct the computer to continue following the 

instructions in the program, making use of the data which has just been 

entered into the computer memory. In the example just discussed, the 

location called RECORD now contains the new data and appears as follows: 

nRECORDn © NEWSWEEK 

© 0,30 

© 0.00 

© CURTIS © 

Succeeding instructions in the program may direct the computer to 

search the master file and insert this new record in the proper alphabeti­

cal location. Or the data could be inserted in the existing string of data 

comprising the master file without having to change the location of any of 

the symbols in the string by means of some type of linking mechanism. 

This link would connect the insert to the desired point in the string. The 

linking mechanism is under control of the program through the insert 

instruction. 

It is assumed that this insert instruction is able to make provision 

for handling the level indicators at the end of a file. If the end-of-

file indicator is a © , for example, the implied indicators ©, ©, and 

©, are also physically present with the © in the computer memory. The 

sequence of the ending characters in the file would thus appear as: 

© Record © © © © 

Now if a new record, of level ©, is to be inserted at the end of 

the file, the insert instruction would essentially "move" the© © © © 

indicator series to the right, leaving space for the record being added. 



www.manaraa.com

50 

The result would be as follows: 

® Record (5) New Record (I) (2) (§) (4) 

The above technique of providing input data may be used by all of the 

internally stored routines. Whenever a routine needs information from the 

operator, it tells the operator which information is needed and how it is 

to be given. The operator has only to "fill in the blanks". He does not 

have to be concerned with the structure or level of the particular data 

which he is providing to the computer. 



www.manaraa.com

51 

SUMMARY AND CONCLUSIONS 

A data processing system having certain functional properties has been 

proposed in this dissertation. These properties are; 

1. The system can be operated by an inexperienced person 

2. The system contains a fixed set of stored programs suited to its 

particular application 

3. Program names are encoded and a program selected by the operator 

by means of a push-button scheme or an equivalent technique 

4. The proposed system uses a high-level machine language 

5. The operator is included in the input loop and forced to auto­

matically supply the correct level designation of the input data 

6. The input-output device is an ordinary typewriter 

An inexperienced person can operate the proposed system because the 

knowledge of computer programming as a prerequisite to system operation has 

been removed. This has been accomplished in two ways. In the first place, 

all the necessary programs for application of the system to a particular set 

of problems are written in advance, by someone trained in business analysis 

and programming, and stored in the computer memory. Here a program may be 

selected at random by the operator by means of a push-button scheme or some 

equivalent selection technique. 

Secondly, the operator has been included in the input loop and is 

automatically forced to supply the input data in a form acceptable to the 

system. This technique was accomplished by adding a "surround" verb to the 

EVE language to make provision for automatic level designation of data in 

the programs themselves. 



www.manaraa.com

52 

A high-level problem oriented machine language, known as EVE, was 

found to be better suited to this type of system than an automatic coding 

language such as COBOL. In comparing a few sample programs in each lan­

guage, it was found that EVE and COBOL both provide easy-to-use, efficient 

programming vehicles for business problems. The EVE language, however, had 

the additional desirable property of not requiring a compiler. Programs 

written in the EVE language can be implemented directly in hardware. This 

makes it possible to change programs in the field without having to re-com-

pile the modified programs. It was also found that EVE could easily handle 

the automatic level designation of input data by the addition of a new verb 

as mentioned above. 

The development and implementation of these new system concepts are 

discussed in detail in various sections of this dissertation. It has also 

been shown, by two illustrative examples, that there are certain classes of 

problems which are particularly suited to the application of these data 

processing techniques. 

This research indicates that a system operating under the constraints 

of the concepts and objectives described above is possible from the view­

point of the user, and realizable in terms of existing software and hard­

ware technology. 



www.manaraa.com

1. 

2 .  

3. 

4. 

5. 

6 .  

7. 

8, 

9, 

10, 

11 

12 

13 

53 

LITERATURE CITED 

Chapin, N. Programming Computers for Business Applications. 

New York, N. Y., McGraw-Hill Book Co., Inc. 1961. 

COBOL 1961. Revised Specifications for a Common Business Oriented 
Language. Washington, D. C., U. S. Government Printing 

Office. 1961. 

Elbourn, R. 0. and Ware, W. H. The Evolution of Concepts and 
Languages of Computing. Institute of Radio Engineers 
Proceedings. 50: 1059-1066. 1962. 

Fleishman, A. M. Future is Bright for EDP in Smaller Companies. 
Automation. 8: 66-72. 1961. 

Greenburger, M. Management and the Computer of the Future. New 
York, N. Y., John Wiley and Sons, Inc. 1962. 

. •> 

Jeenel, J. Programming for Digital Computers. New York, N. Y., 
McGraw-Hill Book Co., Inc. 1959. 

Katz, J. H. and McGee, W. C. An Experiment in Non-Procedural Pro­
gramming. American Federation of Information Processing 
Societies Conference Proceedings. 24: 1-13. 1963. 

Ledley, R. S. Programming and Utilizing Digital Computers. New 

York, N. Y., McGraw-Hill Book Co., Inc. 1962. 

McCracken, D. D. A Guide to COBOL Programming. New York, N. Y., 

John Wiley and Sons, Inc. 1963. 

Mullery, A. P., Rice, R., and Schauer, R. F. Adam--A Problem-
Oriented Symbol Processor. American Federation of 
Information Processing Societies Conference Proceedings. 

23: 367-380. 1963. 

Orchard-Hays, W. The Evolution of Programming Systems. Institute 
of Radio Engineers Proceedings. 49: 283-295. 1961. 

Pfeiffer, J. The Thinking Machine. New York, N. Y., J. B. Lippin 
cott Co. 1962. 

Sammet, J. E. Basic Elements of COBOL 61. Communications of the 

Association for Computing Machinery. 5: 237-253. 1962. 



www.manaraa.com

54 

14. Serrell, R., Astrakan, M., Patterson, G. W., and Pyne, I. B. The 
Evolution of Computing Machines and Systems. Institute 
of Radio Engineers Proceedings. 50: 1039-1058. 1962. 

15. Sharps, R. A. Computer Software. Unpublished paper presented at 
Electrical Engineering Seminar, Ames, Iowa, Sept. 1962. 
Mimeo. Ames, Iowa, Iowa State University of Science 
and Technology, Department of Electrical Engineering, 
ca. 1962. 



www.manaraa.com

55 

ACKNOWLEDGEMENT 

The author wishes to thank his major professor, Dr. A. V. Pohm, 

for suggesting the topic and for offering helpful comments throughout 

the development of this dissertation. 



www.manaraa.com

56 

APPENDIX A 

This appendix will not contain the rules needed to write correct 

COBOL programs, since to do this would be equivalent to reproducing the 

complete specifications. The treatment given below, therefore, is a much 

simplified version of COBOL-1961. For a more extensive description of 

the COBOL language, the reader is directed to references 2, 8, 9, and 13, 

from which the following basic features have been taken. 

The COBOL Language 

COBOL (Common Business Oriented Language) is a problem oriented lan­

guage which is a subset of normal English, and is suitable for expressing 

the solutions to business data processing problems. These problems 

involve the systematic manipulation of large masses of data. Hence to 

perform a COBOL computation the computer requires two kinds of informa­

tion: 

1. The program, in COBOL language, that is to be executed in order 

to perform the processing 

2. The data which is being processed 

The basic principle in considering the data is grouping of related 

data. A file is the largest set of related information, and consists of 

any number of records directed toward some one purpose. These records 

are in turn made up of sub-records of smaller sizes called data items, 

which are recorded in a predetermined format. A piece of data which is 

never subdivided is called an elementary item. Each record in a file 

contains a key word by which it can be identified for processing. All 



www.manaraa.com

57 

records of a similar type, that is, belonging to a given file, are pro­

cessed, one at a time, in sequence. 

A program written in COBOL is known as a source program. It can be 

translated by a compiler into a machine language form known as the object 

program which will run on the specified computer and produce answers to 

the problem. A source program for data processing will contain four 

elements: 

1. An identification of the program, the author, and the date 

2. A description of the equipment being used in the processing 

3. A description of the data being processed 

4. A set of procedures to specify how the data is to be processed 

COBOL is divided into four divisions, one for each of the above 

elements. The divisions are inserted into the computer in the order 

listed. The first and second divisions are known as the Identification 

and Environment Divisions, respectively. The last two, the Data Division 

and the Procedure Division, will be described further in the following 

few paragraphs. 

Data Division 

In order that the computer should be able to distinguish the differ­

ent data items, the information on which processing is to be carried out, 

the computer must be "told" the format, with the different data items 

given data names. The Data Division specifies the characteristics and 

organization of the data records and effectively specifies symbolic 

addresses to the data items. 



www.manaraa.com

58 

The entries in a COBOL record description are built around the con­

cept of a level of data. The record itself is the highest level and must 

always have the level number 1. Within a record there may be groups of 

elementary items which may have level numbers as high as 49. Groups and 

elementary items may both have data names which can be referred to in the 

Procedure Division. The level structure is presented in the Data Division 

by writing the level number of each record, group, or elementary item 

before the name. 

In addition to describing data on input and output files, the Data 

Division also describes constants and temporary data which may be held in 

"working storage" locations in the computer memory for use during the pro­

cessing. 

Procedure Division 

The Procedure Division specifies the steps that the user wishes the 

computer to follow in processing the data. These steps are expressed in 

terms of meaningful English words, statements, sentences, and paragraphs. 

Verbs denote actions, sentences describe procedures, and conditional 

statements provide alternative paths of action. This aspect of the over­

all system is often referred to as the "program"; in reality it is only 

part of the total specification of the problem solution. 

The Procedure and Data Divisions are kept separate in the source pro­

gram -- but everything in the object program depends on how the data is 

stored and organized. Keeping the divisions separate makes it easy to 

change the program slightly or correct errors. The program is also easier 

to write in the first place, because the writer does not have to be 



www.manaraa.com

59 

continually conscious of the data structure while trying to concentrate on 

the instruction sequences. 

Characters 

In defining any language it is necessary to state clearly the set of 

characters which can be used, and the rules for grouping them. A character 

is the most elementary unit of data, and may be a numeric digit, a letter, 

or a special character. C0B0L-61 contains 51 characters used for words, 

editing, punctuation, formulas, and relations. 

The following lists show the specific COBOL character set: 

Characters Used in Words 

0,1,...,9 

A,B,..., Z 

- (hyphen) 

Characters Used in Editing 

$ (dollar sign) 

* (check protection symbol) 

, (comma) 

(actual decimal point) 

Characters Used in Punctuation 

" (quotation mark) 

( (left parenthesis) 

) (right parenthesis) 

(space) 

; (semicolon) 

Characters and English 
Equivalents Used in 
Relations and Formulas 

> GREATER THAN 

< LESS THAN 

- EQUALS 

+ PLUS 

MINUS 

* MULTIPLIED BY 

/ DIVIDED BY 

** EXPONENTIATED BY 



www.manaraa.com

60 

Words 

A COBOL word is composed of not more than 30 characters chosen from 

the set of numerals, letters, and the hyphen. A word may not begin or 

end with a hyphen. A word may be terminated with a space or one of 

several punctuation marks. A few of the more important types of words 

will be discussed briefly. 

A noun is a single word which is a data name, literal, condition 

name, or procedure name. The data name is the name (or address) of a data 

item. That is, each of the data items, which themselves never appear 

explicitly in a COBOL program but reside on the data tape, must be 

referred to by a data name. A data name must contain at least one letter, 

and it must not contain any spaces. 

There are occasions when it is desirable to include a data item 

explicitly in the COBOL program itself; such data items are called liter­

als. Nonnumerical literals must be placed within quotation marks so that 

they can be distinguished from data names. 

It is often desired to give names to the literals themselves, and 

these are called condition names. Thus the value of a condition name is a 

literal, which appears explicitly in a COBOL code; the value of a data 

name is a data item on the data tape. 

In COBOL the individual statements in the Procedure Division cannot 

be labeled. Instead, only a paragraph of statements can be labeled, and 

such labels are called procedure names. 

A verb denotes an action and appears only in the Procedure Division. 

The verbs are divided into the following categories: arithmetic, input-



www.manaraa.com

61 

output, procedure branching, data movement, ending, and compiler direct­

ing. The complete list of verbs is given below: 

Arithmetic (5) 

ADD 
SUBTRACT 
MULTIPLY 
DIVIDE 
COMPUTE 

Procedure Branching (3) 

GO TO 

ALTER 

PERFORM 

Data Movement (2) 

MOVE 
EXAMINE 

Ending (1) 

STOP 

Verbs (23) 

Input-Output (6) 

READ 
WRITE 
OPEN 
CLOSE 

ACCEPT 
DISPLAY 

Compiler Directing Declaratives (3) 

DEFINE 
USE 
INCLUDE 

Compiler Directing Verbs (4) 

ENTER 
EXIT 
INCLUDE 
NOTE 

Reserved words are required key words which have a precise meaning in 

a COBOL program, such as the verbs and other words associated with verb 

formats. These reserved words must not be used for data names or for any 

other purpose than that specified. Since only a few reserved words are 

hyphenated, invented data names may be hyphenated to ensure that a reserved 

word has not been used. A digit may be put into an invented name for the 

same purpose, since no reserved words contain digits. 

Statements, Sentences, and Paragraphs 

All statements begin with verbs, followed by other words of a type 

and sequence dictated by the allowable format of each verb. The statements 



www.manaraa.com

62 

in COBOL are placed together to form sentences. A sentence is composed of 

one or more statements separated by a comma, a semicolon, the word AND, or 

the word THEN, and ends with a period and a space. 

A group of successive sentences that may be related in function form 

a paragraph, which is written with a physical separation. Only a para­

graph can have a label, called a procedure name, which is placed as a 

heading to the paragraph. The purpose of paragraphs is to permit the user 

to name groups of sentences so that control can be passed to them. When a 

paragraph is referenced by a GO TO verb, control is passed to the first 

sentence of the named unit. 

. Ï-.-i—... ,:i vi,;c -,,-ii'-.'.J;Vi 



www.manaraa.com

63 

APPENDIX B 

The EVE Language 

The following presents a brief summary of the basic features of the 

EVE language. For more detailed specifications, see reference 10. 

Syntax 

The EVE language consists of verbs, nouns, and modifiers, and rules 

for their use. These rules are the syntax of the language. An English­

like structure is used. A noun with any number of adjectives modifying 

it makes up a noun phrase. All adjectives follow the modified noun. An 

adjective is considered to modify not just the noun, but the noun as 

modified by any adjective preceding the particular adjective. 

A verb and any number of adverbs modifying it makes up a verb phrase. 

An adverb precedes the modified verb. 

An operation is a combination of at least one verb phrase and one 

noun phrase which accomplish some process. A sentence consists of at 

least one operation. 

Nouns 

A data sequence may be given a name. These names become the nouns of 

the language. The name can be formed from any combination of any number 

of the general characters (small or capital letters, numbers, or special 

symbols). The first character of a name must be a letter. These nouns 

may be given any definition the programmer desires; however, names must be 

unique in that the name must refer to only one data sequence at a given 



www.manaraa.com

64 

time. Names of data must be surrounded on each side by a name symbol (n). 

The data being defined is the data following the name. 

Certain defined nouns are provided in the language. These are: 

1. i_t -- This will indicate the preceding name in the operating 

sequence. 

2. this — This will indicate the sentence in the instruction which 

is currently being interpreted. 

3. unit -- This will indicate the input-output unit whose number is 

indicated by the following noun. 

Verbs 

In the machine language, a set of verbs with defined meaning would be 

built into hardware. A few of these are described in the list that follows, 

1. add (+) -- The numeric data indicated by the subject is added to 

the numeric data indicated by the object. 

2. subtract (-) — The numeric data indicated by the object is sub­

tracted from the numeric data indicated by the subject. 

3. multiply (*) -- The numeric data indicated by the subject is 

multiplied by the numeric data indicated by the object. 

4. divide (/) -- The numeric data indicated by the subject is 

divided by the numeric data indicated by the object. 

5. set -- The numeric data indicated by the subject is set to the 

number of places beyond its absolute decimal place indicated by 

the object, 

6. truncate -- The data indicated by the subject is truncated to a 

number of characters indicated by the object. 



www.manaraa.com

65 

7. edit -- The data indicated by the subject is modified according 

to the format noun indicated by the object. 

8. define (—> ) -- The information indicated by the subject is 

placed at the indicated location. 

9. delete — The data indicated by the object is deleted. 

10. search -- The data indicated by the object is searched for an 

element which meets the condition specified by the conditional 

statement which follows. 

1 1 .  transfer ( P )  -- Program control is transferred to the instruc­

tion sentence, or phrase or symbol within the sentence, indicated 

by the object. 

12. if_ -- If the conditional statement following i_f is satisfied, 

perform the remaining operations in the sentence; otherwise, 

transfer control to the next sentence. 

13. stop -- This instruction causes the computer to stop. 

New verbs may also be defined using the previously defined verbs and 

nouns. In addition, the noun 0£ n is available for use in communication 

between the defining instruction and the calling instruction. This noun 

will indicate the nouns in the calling verb phrase. If any one noun in 

the calling verb phrase is required — the n^ noun, for example -- then 

this is indicated by writing 0£ n. The only requirement for a particular 

combination of letters to be used as a verb is that this combination must 

have a unique definition. 



www.manaraa.com

66 

Adverbs 

1. round -• Round the last digit of the result of the set or 

truncate verb which this adverb modifies. 

2. name -- This adverb will indicate that the modified verb is 

to apply only to the names in the data specified. 

Adjectives 

1. follow!ng ( (T) | j ) »• This will indicate, if j is positive, 

the jth item at level i following the data previously specified. 

2. set current ( £ j ) — This will indicate, if j is positive, 

the jth item at level i following the. data previously specified. 

This new item will then become the "current" item in that data 

string. 

3. current ( j ) -- This will indicate, if j is positive, 

the j'*1 item at level i following the current location in the 

data previously specified. This new item will then become the 

"current" item in the data string. 

4. line — This acts like a mention-identifier and, used with the 

set current and current adjectives, will indicate the line 

number and the line number beyond the current line, respectively. 

Conditional statements 

A conditional statement results in a determination of the condition 

of either the truth or falsity of the statement. The verbs used in a 

conditional statement are: equal, not equal, less than, less than or 

equal, greater than, greater than or equa1, and reach. In using the reach 

verb, the identifier following the item of data specified by the subject 



www.manaraa.com

67 

is compared against the identifier mentioned as the object of this verb 

to establish the condition of equality. 

Format nouns 

The format noun indicates the editing to be performed on the data 

symbol indicated by the subject of the edit verb of which the format noun 

or its name is the object. 

The positioning of the decimal place or right-hand character within 

the resulting field is accomplished through the use of the Position Deci­

mal Point indicator (M) and Position Right indicator (A). The floating 

or float-inserting of a character is accomplished through the use of the 

Float (K) or Float Insert (I) indicators. The insertion, deletion, and 

leaving unchanged of characters is accomplished through use of the Char­

acter Delete (N), Print (P), Significant Conditional Print (W), Positive 

Conditional Print (X), Negative Conditional Print (Y), and Zero Print (Z) 

indicators. 

Data 

Data consists of strings of symbols upon which is usually imposed 

some form of grouping or hierarchy. These groupings are indicated by some 

form of identifiers. In describing data, the EVE language makes use of 

the following groups and their associated identifiers: 

Group Identifier 

USE MENTION 

Character (Implied) 

Phrase 

Symbol 0 
© 

S 



www.manaraa.com

68 

Sentence (j) 

Paragraph @ 

Chapter ($) 

Book © 

When the structure of a string of data or instructions is to be 

identified, then the "USE" identifiers are used. If some group of data 

is being referred to in the instructions, then the "MENTION" identifiers 

are used. The Q identifier indicates the end of a symbol and the start 

of a new symbol. These identifiers form a hierarchy in that a (2) also 

implies a Q, a (5) implies a @, and a Q, etc. 

The names of data will appear with the data itself. A name can be 

given to any string of data at any level from Symbol to Book. This string 

may contain named groups of data. Thus, named groups within named groups 

are allowed. The name character n will surround the name when it appears 

with the data. The first character following the second n will be a 

"MENTION" identifier which will indicate the level of the data being 

named. 

A name of an instruction or group of instructions must be defined as 

a verb, and surrounded by the character v. 

Input-output 

Data is of variable field length, and all memory assignment of named 

sequences of data and instructions is accomplished by the machine. The 

programmer need only provide the machine with an input list indicating 

where named blocks are located, and a priority, and an output list indi­

cating where data should go and a priority. The input and output list 

& 
S 

© 



www.manaraa.com

69 

will have a structure similar to the data itself. Together, the input 

list and output list should form a paragraph and must be given the name 

"10 List". 


	1964
	Simplified language and coding for limited data processing applications
	Jerry Ronald Tennant
	Recommended Citation


	tmp.1411504564.pdf.3aHaV

